
SplitNeuron project
by Domenico Guarino
ocinemod@users.sourceforge.net

SplitNeuron is a project for a set of data structures and functions being able to
simulate large, biologically plausible, neural networks. This include the possibility
to share load among multiple machines and calibrating operational load on each
machine.
To achieve these aims, features and algorithms of usual simulation packages have
been reconsidered. Most simulation tools use McCulloch-Pitts derived models
which simulate neurons by a single continuous variable, representing mean firing
rate. It brings well proved results so is widely used in engineering applications. But
it is not biologically plausible, nor capable of reproducing activities, such as
synchronization, that are needed to explain complex behaviours as recognising a
pattern among others equally acceptable, keeping focus on object in a moving
environment, binding shape and colour of an object, ...and many others.
These tasks are accomplished by alternative models, accurately reproducing
spiking nature of neurons, i.e. the ability to rapidly change membrane potential up
to the emission of a Spike. This could be interesting from an informational point of
view, for the kind of computations that could be done on such signals, and from an
informatic point of view, for the discreet nature of signals emitted by neurons.
The models implemented by SplitNeuron are Integrate-and-Fire (the first model
showing pulsatile behaviours) and Simple Model by Izhikevich (the latest model
explaining and reproducing almost all biological behaviours).
For such models there are a few simulation tools (or nothing at all) and their
implementation is focused on getting knowledge ABOUT networks (statistics,
dynamics, ...). SplitNeuron is concentrated on information flow INSIDE and FOR the
network, aiming at the largest and fastest simulation.

1 INTRODUCTION
Due to some details in the way some terms are used throughout documentation, a brief
definition is given. These are not specific explanations, so the reader is highly recommend
to refer to the (many) books available on the subject for a complete explanation of basic
concepts.

1.1 Unit
An artificial neural networks is made of a many simple units of computation interlaced
called neurons, by biological inspiration. Each unit receives signals from other units trough
its connections. These signals alter unit state, commonly called potential referring to
membrane potential of real cells. Signals received are multiplied by a value, called weight,
which simulate signal modulation of typical biological synapses. Potential value varies in
time and when variation reaches a certain threshold, the unit produces a signal. Potential
variation along time is a function of weighted inputs and other parameters (depending on
model). Such function characterizes each model and is called ´Activation Function´ (or
Transfer function, with relation to linear algebra).

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

mailto:ocinemod@users.sourceforge.net
http://creativecommons.org/licenses/by-nc-sa/2.5/

1.2 Architecture
The term refers to connection arrangement and units distribution. A network is made of (a
lot of) units woven by connections. Units are all equal as for their functioning and differ
regarding parameters and potential state. McCulloch and Pitts (1943) gave mathematical
proof that a network made of such units can compute every kind of logical function due to
unspecificity of unit in itself and specificity of connection arrangement and value. Indeed,
every unit only treats information that is locally (to its input connection) available, without
care of global purpose. Connections in and out render each unit a convergent-divergent
system, the cornerstone of distributed computation. So, while architecture specifies
network behaviour through signal paths, tweaking connections allows a fine tuning of
activation. Therefore connections represent ´knowledge´ stored inside network and their
modification can be called ´learning´. Indeed, functions modifying connections are usually
called learning functions and are used to fine discriminate among data fed into networks.

1.3 Continuous vs Discrete
McCulloch-Pitts Model simulates neuron activity as mean firing rate, the mean of spike
fired in timeunit. In truth, neurons generate peaks of membrane potential value, known as
´Action Potentials´ or Spikes, which spread down a membrane protrusion, called axon,
until they reach the end in the synapse termination, where activate (chemical) signalling to
the next neuron. A spike is a short lasting event (approximately 1ms) with a stereotypical
trend, therefore it is likenable to an all-or-none event (discrete, 0/1). Other mean firing rate,
lots of interpretations apply to sequence of spikes (spike train) based on (arrival, relative,
absolute) spike timinig. Mean firing rate works where inputs are constant or slowly
changing. Only in this case, they do not require the neuron to have time reactive ability
lower than that necessary to accrue postsynaptic potentials and then reach threshold. In
other cases (a lot more), reactive times are shorter than those necessary to raise spiking
frequency, i.e. to lower time interval between spikes. Furthermore, interpreting spike trains
only as mean firing rate adds two more limitations: firstly it involves labelled lines for place
of origin, because there are no other ways to identify signal origin; more, mean rate
reduces to only one value the amount of information conveyed by a single channel,
consequently neuron is seen as a mere integrator translating inputs sum in a single
continuous value. Besides mean rate, from an informational point of view, there are other
interpretations for a sequence of spikes. In general, every feature in the spike train co-
varying with features of stimulus can convey information about stimulus. In addition, more
codes (timing configurations) can co-exist inside the same spike frequency, so it can feed
more layers of neurons able to process it differently.
On the other side, by an informatic point of view, pulse-discete nature of spikes marries
operational logic of computers. This means the creation of data structures and algorithms
both biological and computational suitable. Biological, as they are detailful and
computational, as they are consistent with the way information is binary coded.

1.4 Network vs Population
A network is defined by the model used to simulate neurons, by architecture and flow
sequence. Usually a subset of units is defined ´Input units´ as they receive input values. At
the same time, an ´Output units´ subset is defined to be the one to pick computed results
from. This approach assumes an implicit functioning. The net starts in a ´quiet´ state (but it
can be read as ´turned-off´), in which units are not active, i.e. not updated. Starting
execution and applying stimuli, input units are turned-on, according to interaction among
stimuli, weights and activation functions. Their activity spreads to other connected units
which act just the same. At a certain moment, output units state is assumed to be the

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

network result. This kind of functioning requires the net to have an activity state that can
be treated as solution. It requires the net to go through a varying initial state to an almost
fixed point state. But stability does not mean fixity. As an example, a series of values
repeating in cycle can be defined as stable in time as a fixed value. New approaches in
neural networks theory descend from studying them as dynamical systems and explicitly
involve time in activation functions.
Furthermore, pulsed dynamical models shift stability and equilibrium concepts beyond
single neuron, to the joint activity of large amount of units, or population. No wonder if
some of the most important figures in neuroscience research, Walter Freeman, Gerald
Edelman and Antonio Damasio, characterize neuronal ensembles on a
relational/connectional/join basis. Damasio defines neuronal ensemble by connection
lenght of each neuron in them; Edelman´s neuronal group is detected by join activity
correlation among connected neuronal groups; Freeman brings ´gain´ key concept to
distinguish aggregates, low interaction sets, from populations, high interaction ensembles
showing gain during their activity in time. The main outcome of dynamic interpretation is no
more existence of phases in network activity: no more input or output or converging
phases, but only activity in its multiple shapes.

1.5 Population activity
High connectivity degree among neurons brings subset excitations to rapidly spread
through the ensemble, reaching activity level of population as a whole. This is the first
feature not viewable at neuron microscopic level, spanning even over millimeters of brain
cortex.

fig. 1: rasterplot showing synchronization

Most known population activity is synchrony: almost all spikes are released in the same
(short) time interval, showing frequency and phase tuning. To understand the way it
happens, single neuron potential dynamic must be considered. After spike peak,
membrane potential lowers to its minimum; subsequently, as population member, due to
stimulations from other units, potential goes up until it reaches threshold again and another
spike is fired. During basal activity, spike frequency is almost constant. Importance of
connection interaction now fully discloses: each neuron sends its signal to other population
members; so, every moment, the neuron receives all other signals. These are translated,
inside the neuron, in membrane potential shifts and, summed to normal trend, pushing it to
threshold before its resting interval and nearer, in frequency and phase, to other received
signals. In addition, neurons are maximally excited by coincident stimuli (due to temporal
and spatial summation properties of cell membrane). The most important thing is: idealized
single neuron (because it could not exist alone) would normally follow its typical interval
between spikes, given by membrane constants and other parameters, but forthcoming
stimuli anticipate emission time, shortening neuron temporal offset from stimuli. In a
sparsely active population, there should be an even small amount of neurons spiking in a
given instant. Next timeslice, neurons near threshold would receive spikes from active
subset. If interactions among received signals and connection weights were strong
enough, neurons would fire, joining and raising the active subset. Then, within a short

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

period, all neurons will be caught in synchro activity.
So, leaving single neuron, it is possible to define a ´population activity´ as the sum of
active (spiking) neurons during considered time interval. Then, the more neurons are
active in timeslice, the higher this population measure will be. This can be considered as a
direct measure of population activity made by spike number average. In a slightly different
way, taking into account an average of all membrane potentials, instant activity can be
read as coherence of the population, meaning the level of activity by the number of
neurons in the same state instead of the number of fired spike.

fig. 2: synchronization and de-syncronization

But, if a population was always synchronized, the information brought by this state would
be null, just because information is given by difference. Worse: the only observed
condition of long-lasting synchrony is epilepsy. So, there also exist mechanisms of de-
synchrony, by which active subset loses members. This could be driven by small
differences such as connection shapes and delays, neuronal time and space constants,
noise and others.
Synchrony and de-synchrony are claimed mechanisms to explain the way perception
becomes awareness and could be projected in mind to be part of decision processes and
other processes in conscience. Indeed, given a balance between absolute synchrony
(epilepsy) and complete de-synchrony (noise) it is possible to figure out how a behaving
(at several different level of activity) network could represent upcoming stimuli. The arrival
of activity, in an already behaving network, could rapidly drive a synchronized state of a
subset.
In fact, as mentioned before, this is achieved by influence of stimuli on the near-to-fire
subset. Given a population with, for every timeslice, a certain number of nearly active
neurons, these will be the first to be pushed to fire and start synchronization process of a
bigger subset. In the same way, locally achieved coherence could be transfered to other
layers where can be associated to other activations. As for local (inside a population)
excitation, connections among layers cause large coherent stimuli to maximally excite
large interlaced subset. At the end, as stated also by von der Malsburg, a pioneer of this
kind of models, neural networks began as subsymbolic processors but can reach now
symbolic processing

1.6 Applications for new models
There are a lot of applications making use of spiking neuron models. Currently, major
results come from perceptual problems. Categorization made with classic neural network
is tied to object specific learning, along with its troubles (mainly superposition and scale
limits). These can be skipped joining neural networks with expert systems explicitly
treating their outputs in symbolic terms, overriding neural subsymbolic data treatment. To
the contrary, spiking models, succeed in offering complete solutions to pattern analysis
and storage problems:

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

Binding
Since the same object presents itself, in natural conditions, under several variations
(position, scale, rotation, perspecive deformation, illumination, background, noise,
...), there must be a way to handle this difference without ad hoc solutions. Modern
neuroscience allows object features decomposition and their separate analysis as a
method of variety reduction. The major drowback is subsequent binding problem:
How can these spread information represent the original object as a unite whole?
This task can be achieved by synchronizing populations treating different features.
As a raw example, population X telling ´circle´ synchronized with population Y telling
´yellow´ are read by third population Z as ´Sun´; while population X telling ´circle´
synchronized with population Y telling ´red´ are read by third population Z as ´Mars´.

Segmentation
In environments full of objects, object-ness should be a starting point in analysis. The
very first stage of perception is focusing activity on one object shape (visual, auditory,
...) leaving the rest outside: the well-known figure-ground segmentation problem. This
task is extremely complex for classic networks implying learning, instead is quite
simple for newer model due to difference in spike train phases. Concentrating on
network architecture makes possible to obtain a fine feature reacting population,
fulfilling patterns and synchronizing onto them as quick as possible.

Storage and retieval
Learning rules of spiking models shorten times to get the network stores and
retrieves fed patterns. Classic paradigms assume long learning sessions of repeated
presentations and lots of examples. With spiking neurons, instead, althought hebbian
algorithms are still used, learning times are greatly reduced, even to one-shot
presentation and single example item.

2 MODELS

2.1 Neuron spiking
To put necessary life activity through, all cells adjust in-out membrane exchanges. Lipidic
membrane acts as insulator and has only channels, protein structures trespassing
membrane, as control gateway. Crossing ion and molecule has chemical but also electric
properties, so every body cell has a potential difference (measured in mV) between
internal and external membrane side. In particular, neurons are cell fine managing their
potential difference thanks to several kind of channels. Almost all of them are provided
with ion chemical species selectivity and some are actually able to change their
open/closed state depending on membrane potential (henceforth named voltage-
dependent gates).
Cell membrane structure and behaviour can be clearly described in terms of electric
circuitry (see Kandel & al[1991], appendix A). The force driving ions in and out neurons
can be treated as potential difference, and ions themselves as electric charges. In the
same way ion channes can be considered as conductor and cell membrane as a charge
accumulator. Indeed, membrane acts as a barrier with selective permeability, carried out
by channels. So it stocks non passing ion/charges. Pulled apart, charges flow into ion
channels that are reasonably considered as conductors and disticted depending on their
disposition to conduct charges.
To ease formalization, membrane crossing currents are split in two component: a ion
current flows through channels and is treated as the conductive (ohmic) part of membrane
potential (Vm) trend; while a capacitive current varies the amount of charges on both

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

membrane sides. For a potential variation (DVm) to happen, it is necessary a variation of
charges kept by membrane sides. This membrane feature gives an important property to
neurons: stimuli temporal summation. Inputs coming to membrane do not vary immediatly
Vm. At first the most part of charges goes to membrane wall, meeting potential difference
demand, but gradually reaching (local) membrane capacity (C) limits, charges will freely
flow according to electro-chemical gradient to other cell places. Finally, if input pulses,
integrated in the temporal summation lapse, drive potential Vm to a certain (threshold)
value, then voltage-dependent channels get activated. These channels let come in other
ion species (kept until now outside) which rapidly boosts potential to voltage peak. Rapid
potential change activates in turn other voltage-gated channels that let in ion species
which equally rapidly lowers potential difference (hence called delay-rectifier). These
events are known as spike (or action potential), which is neuron-made pulse used as
signal all over the nervous system.

Lots of model have been developed simulating discrete spike emmission. This project
aims two of them:

• Integrate & Fire
• Izhikevich' Simple Model

Both models simulate some neuron biological property. The first one is extremely simple
and is used for educational purposes and to easily prove theorems. The second one has
been chosen because of its ease of implementation and capacity to fully comply with
biological collected data.
Both models use first order differential equations (or ordinary differential equations, ODE)
to calculate membrane potential in time. The first one use only one equation while second
uses two equations, one for rapid voltage-gated currents and the other one representing
all slow delay-rectifier currents.
To implement differential equation it must be assumed a method to calculate
instantaneous value increment. It can be, according to Hansel & al. [1998] sandard Euler
algorithm, choosing efficency in spite of extreme accuracy.

2.2 Integrate and Fire
In this model there is a big semplification: there are no voltage gated currents, as if they
were completely deactivated under threshold. There are only ohmic currents (i.e. those
carried by always open channels), accounting only for passive membrane properties,
represented using one linear (because it uses only one differentiated variable) differential
equation. In addition, if potential Vm reaches an hard threshold value, then a spike is said
to fire and Vm is first automatically set to the peak value and in subsequent timeslice it is
set to a low reset Vm value.
Potential dynamic under threshold is equivalent to passive membrane currents:

(1).

where Imt and Vmt are, respectively, membrane current and potential, R is channel
resistence and C is membrane capacitance. Taking outside potential variation in time
(DVm/Dt), equation (1) becomes:

(2).

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

To represent the spike, it is added a threshold condition for potential value:

(3). if Vmt >= threshold

when it is reached, it starts a series of prefixed assignements: first it goes to a peak value

(4). Vmt+1 = peak

and right after it is set to a very low value and kept there for a short period (tref), called
´refractary´

(5). Vmtref = reset.

This model illustrates some neuro-computational properties (as clearly pointed out by
Izhikevich[2004]):
- Uniform and discrete all-or-none spike
- Defined threshold
- Refractory period
- Distinction between excitatory and inhibitory inputs, respectively pushing potential toward
threshold and rest
- Input strenght encoding in spike emission frequency and temporal distiction of spike
trains.
These properties make Integrate and Fire to be a model detailed enough to resemble real
neuron and at the same time simple enough to grant mathematical analysis of pulsed
behaviour. But, truly, it is not a real spiking neuron. That is because there not exists a fixed
threshold in biological neurons, nor a completely uniform dynamic in spike upstroke. Those
were semplifications made by Lapique, inventor of the model in 1907, to ease the way to
formalize neuron behaviour. Indeed, spike is artificially added by conditions (3), (4) and
(5), it is not a product of model equation dynamic.

2.3 Simple Model
Izhikevich model is more complex from a mathematical point of view (therefore reader is
highly reccomend to read his books and articles), nevertheless implemetation is quite
easy, thanks to author attention to computational problems and his willingness to publish
how the model has to be implemented.
Simple model, despite of name, is the most accurate from a biological point of view,
without loss in computational efficency. This is the reason why has been chosen in this
project. The most complete and famous model is that conceived by Hodgkin and Huxley. It
consists of four non-linear (because differentiated variable are joined) differential equation
accounting for membrane potential, voltage-gated and ohmic currents. Izhikevich made
use of non-linear system dynamic theory to analyse and reduce quadri-dimensional
Hodgkin-Huxley model to a more computational efficient bi-dimensional one. He points out
how higher part of spike trend is not relevant, especially for large scale populations,
compared to complex interactions among channels and currents that go under the
simplified name of ´threshold´. Hence he puts in his model a differentiated variable for
membrane potential and another ´recovery´ variable representing a combination of slow
and voltage-gated currents. At the end, Izhikevich could leave threshold outside the model
and let the model parameters and variables lead spike start. In this way he could also

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

simulate almost all kind of neurons just changing model parameters.
Simple model is a set made of two coupled equation:

(6). DVm/Dt = Vm2 - U + I
(7). DU/Dt = a*(b*Vm - U)

where, in (6) Vm stands for membrane voltage, and in (7) U is ´recovery´ variable.
Together with a and b, U renders combined interaction among ion currents. A condition
similar to IF threshold is added to these equations but it represent roof-peak of spike that
when reached, it is used to trigger potential reset and recovery variable update, without
any mess around spike-start decision:

(8). if V >= peak

then reset potential:

(9). V = c

and update recovery:

(10). U = U + d

where parameters c and d are, respectively, reset value and instant increment. Other
details on this model are too long and complex to be treated in this context, so probing
readers could get complete explanations directly from author's article available on his site
(see links).

Essential references:
E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of neural science (III), Elsevier,
1991
J. A. Hertz, R. G. Palmer, A. S. Krogh, Introduction to the theory of neural computation,
Addison-Wesley, 1991
W. Maass, C. M. Bishop, Pulsed neural network, Springer-Verlag, 1998
E. M. Izhikevich, "Dynamical System in Neuroscience", MIT Press, 2004
E. M. Izhikevich, "Simple Model of Spiking Neurons", IEEE Transactions on Neural
Networks, 14:1569-1572
D. Hansel, G. Mato, C. Meunier, C. L. Nelter, "On Numerical Simulations of Integrate-and-
Fire Neural Networks", Neural Computation, 10, pagg. 467-491

3 ANALYSIS

Models are developed to understand neural dynamics simulating it on computers. To this
end, mathematical models have to be expressed in programs (computational models) in
order to be executed. But natural parallel computation, that of neural biological
computation, has to be brought into a single computational thread because of serial nature
of common computing devices. So, balance is required between model details and
computing resources (cpu speed, time access to data, memory dimensions, and so on...).

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://splitneuron.sourceforge.net/index.php?tab=l&sub=1

Until now, series of references have been examined to fulfil analysis and design stages of
a simulation architecture capable of real-time and large number of units (complete series is
here).

3.1 System States
System undergoes a series of discrete states intended to simulate neural biological
activities:

1. Connection state change
2. Activity change
3. Axon state change

These biological activities are coded into:
1. Input update
2. Computing activity
3. Output update

As any other simulator, project has two main stages, eventually followed by a third stage of
back-modifing.
The first stage is for data structure initialization and connection establishing.
The second stage is real execution in which the very three states get cyclical simulated:

1. input data capture
2. istantaneous unit activity
3. spike encoding into output

Eventual third modification stage needs both sides of connections to be executed before
doing any change to connection strenght, so it must be done in moments triggered by
specific conditions. These conditions are ´quite´ regular but not enough to be set into
normal cycle.

3.2 System Requirements
All the items below need to be faced during the project development:
Large unit number

Having a lot of units (several thousand) results in increasing the number of data
structure needed to represent them. In conjunction, more of data structure means
more time to compute. It is therefore necessary to search with care what are the
information getting represented and how translate them into code. Due to large
scaling purpose, must be planned how workload has to be treated and parcelled out
among linked machines. At the same time, it is needed a way to transfer population
activity simulated on a machine to others.

Neuron models
Project intends to support the two kinds of neuron model described before. This task
is eased by common spiking dynamical nature of both model. They differ in functions
and parameters but not in the way they are implemented, using standard Euler
algorithm.

Real-time
Project core concerns data structure and functions to get neuron populations
simulated. In order to make the program capable of simulating real perception tasks,
it must be able to process network as fast as possible, pushing towards no delay
between real and simulated reaction times. Neurons functioning mainly depends on
other neurons, so in order to grant performance larger efforts will be put in

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://splitneuron.sourceforge.net/index.php?tab=l&sub=1

representing and treating that activity.
Different kind of inputs

Another input neurons receive is the activity of receptors, cells specialized in
encoding stimuli into spike trains. Indeed all kind of inputs cannot be fed into the
network directly but need to be translated (´transduced´ in biological terms). At the
same time, in every real-time application data are fed in at high speed rate. Then
time needed to treat data must be shared between acquiring and translating into a
network suitable form. Strategies like direct memory access (DMA) will be useful,
along with devoting single machine for each external real-time data stream. That's
why, as mentioned in previous points, parcel out workload has to be into project
design from the beginning.

System outputs
Neural network outputs can be as different as the purpose for its development. The
first (and sole at the moment) form of output is rasterplot. It is a graph showing lines
for each neuron along time, a dot appear at point corresponding to the instant in
which it fired a spike. Another very helpful could be correlation graph, showing
connection activity in time. There could be other representations (visual or numeric)
of instantaneous parameters state for every single neuron (membrane potential,
synaptic sum, recovery variable, ...). But, to collect and keep these informations a lot
of system time should be used, time that shall be used for network computation
instead. The best way to achieve more outputs will be planning binary savings (such
as DMA).

User interaction
Users communicate with simulator by passive and active modes. User interactions
should include primarily passive mode: saving data structure, states and activities.
First two can be simply something like a dump, but monitor dynamic activities, for
their transient nature, presents more collection problems (as stated before).
Active mode user interactions are used to vary system states in order to test
perticular conditions during deployment. These kind of interactions include units and
connection selective lesioning and direct input and connection changes. Both of them
allow the study of system reaction. Aiming speed enhancement, the worse
requirements are those of dynamic monitoring, that should be reduced to their
minimum, even reduceing information supplied to the user.

3.3 Develop choices
Language choice has fallen on C. Firstly because of personal familiarity with it and its
diffusion. Secondly because there are a lot of online resources that brought the project
(initially concived on Win platform) to develop on GNU/Linux (and eventually on Mac OSX)
platform. These systems has a lot of features useful to the project:

• Lightweight: there are less task of no use during simulation (especially on
graphicless interfaces)

• There are kernel modules and versions thought for real-time performance (RTAI-
Linux...)

• Developer tools community granted
• System is hardware unspecific
• Platform needs no special adjustment to fit projects needs

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

4 DESIGN

Here are some optimization techniques to get spatial and temporal efficiency. In this
section project guidelines are exposed, referring to collected hints. Some of them could be
directly applied, others could be adapted to project needs and, in some cases, could not
be possible to get simply the right choice but one preserving project consistence. Next
exposition flanks relevant biologic features to computational features in order to explain
design.

4.1 System components
In this project the layer will be the main system entity, also depending on connection mode
and strenght, layer will also mean population. According to neuro-computational tradition,
layer is a level inside the network, made of neurons usually sharing some properties (such
as connection mode or origin and cellular parameters). Some biological and computational
observations would justify this choice.
First of all, neurons grow naturally in common structural and functional groups, as it is
shown by pioneering work on cytologic differences by K. Brodmann.

fig. 3: Brodmann' maps

As a consequence, neurons simulation shall reflect these features in parameters and
applying functions. Instead of repeating the same parameters for each neuron, the layer
can store general settings for its neurons with a lot of space and time efficiency.
Secondly, population activities bring more information about large network than single
neurons does. Synchrony, oscillation and other events do not need specific structures for
each neuron since they are derived from all population neurons.
Finally, connective relations concern population. Connection list pertain to every single
neuron, but general flow directions hold between layers, indeed, seeking for afferent and
efferent nerves, physiology detects lots of conections to and from an area. So, it appears
that habit of enclose each dendritic tree into its neuron is correct only complying neuron
cell wholeness, not connection purpose. But, obviously, there are no cells in a computer
and, maybe, it is preferable trying to keep functional dynamics suggested by biology
without making it more complicate.

Depending on the element chosen as point of view there are two usual ways to arrange
network architecture: neuron oriented (better said soma oriented) or connection
oriented. The former orders all informations regarding neurons (included connections)

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3

in data structure accessed by unit index. The latter does the contrary, for each
connection has got a structure pointing to both neurons it affects.
Keeping a neuron oriented architecture is meaningful during output to let activation
function rapidly scroll through each neuron, or in case connections have to be accessed
by means of owning units. But getting through units to access connections during input
update slows down the process. On the contrary, connection oriented architecture is
fine during input update but slows down somas accesses.
The aim of this project is to make use of neither approaches, but to use them both, only
where they enhance efficiency.

To bring on this aim there shall be adopted two main strategies:
• Splitting, exposing and making data structure compact.

It means: separating neuron data, because different informations belong to different
simulation processes; easing access, declaring array of structures for each chunck
of neuronal information believed capable to stand separate; keeping simple to be
able to stuff more information in less data-space. Large unit number and real time
need efficiency as diffuse system requirement so reducing space devoted to data
and time to access them is a primary concern (see principles 7, 8, 10).

• Reorganize execution flow.
Usually choosing neuron or connection oriented architecture implies also a choice
regarding how to carry out data flow, what are data to be recalled, how and when. In
this case, using both approaches together, special care and special data structure
are devoted to merge functional hints from biology and computational needs more
than simply impose on one another.

The remaining of this section is used to better explain this ideas, introducing at the same
time derived data structure and functions that make up the system.

4.2 Exposing and Compacting
Since simulation runs on computer, neuron wholeness is not to be kept. Units data are
split into several structure arrays, as many as functional flows require. Indipendent
declaration means exposition because it removes structure-member hierarchy. Moreover,
large dimension arrays will not be directly members of layer structure, there will be
pointers to their base address (see principle 32).
In a develop state it is, the project could be carried on like this. But it must be able to
include the best solution to manage passages of large arrays of data back and forth cache
memory (see principles 3 and 37). This solution is blocking: knowing cache size, loops
treating arrays are arranged to recall blocks of fitting size (see principles 2 and 41). That is
a must since every network simulation on serial computers means keep on running along
arrays.
Some principles (9, 10 and 11) point out how to get time efficiency through local treatment
of variables. But the main point here is dealing with large arrays. So the solution is keep all
data in global arrays (of known size at compile time and reverse storing, see principles 1,
34 and 38) and bring up-to-needs informations into local variables with blocking principle.
That implies also compacting data. If information about one single unit is huge, only a few
could be cached and treating long arrays will awkwardly imply slow disk accesses, even
blocking. Indeed array dimension is determined also by the way data are stored in them.
Principle 8 states it is prefereable to reduce bit fields usage, but in this case there are
several information per unit to be stored, and units will be a lot. Besides, some time is

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P8
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P38
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P34
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P1
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P11
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P10
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P9
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P41
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P2
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P37
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P3
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P32
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P10
http://localhost/sourceforge/index.php?tab=d&sub=3#P8
http://localhost/sourceforge/index.php?tab=d&sub=3#P7

spent for blocking, but it will be wasted if blocks contain only few data. So, treating large
arrays, bit fields could make fast data loading because CPU cycles are less than those
needed to run over large sized data. Unpack data will lose cycles but, carefully assigning
manner and point of time, could be an efficient choice even for frequent use.
A further consideration in favor with compacting is accuracy needed to represent data. It
depends on values extension and decimal precision. Mostly, current processor variables
are oversized for neurons data extents. Infact membrane potential ranges between +40
mV and -80 mV, Simple Model recovery variable goes from +200 down to -200, synaptic
sum has got some hundred values span. Normally double zero precision is a good balance
between efficiency and accuracy. So, membrane potential (from +40.00 to -80.00) needs a
variable with room for 12000 values, Simple Model recovery variable and synaptic sum
(from about +200.00 to -200.00) need a variable for about 40000 values.

SplitNeuron has three main data type defined: TARGACONN, TARGASSUM,
TARGASOMA because data used during input phase involve connections and
synaptic sum, while output relevant data are synaptic sum, previous instant membrane
potential and other paramenters, so they could be kept and accessed separated.

TARGACONN

is a typedef of unsigned
storing the target
neuron (full description
below) and weight of a
connection. Target bit
field is 20 bit long,
being able to express
1048576 possible
indexes. While weight
bit field is 12 bit, storing
up to 4096 values,
which can be divided by
10n to obtain floating
point of n decimal
precision.

TARGASSUM

This type is not divided
into bit fields since, at
the moment, only keeps
the value of
corresponding index
neuron. So it could act
as a middle passage
being accessed directly
and independently both
from input and output
functions.

TARGASOMA

represents neuron soma
by keeping potential and
recovery variables (in two
16 bit fields). Others
neuron relevant
parameters are stored in
layer structure because
are usually equal for all
layer neurons.

These variable are used throughout the project to declare arrays pointed by functions
which access them to initialise, read and modify stored values during execution. Since
bit field lenghts are declared with #define, they could be changed according to project
development without compromising functions.
(prefix TARGA is italian for ´plate´)

4.3 Reorganizing execution flow
In a system based on distributed analysis, structures and functions in charge of data
exchange are fundamental. The core of this project points to develop a new method for
encoding, transfer and decoding data regarding neurons activity. This method has to serve
more layers and a lot of units in less time.

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

Firstly, layer is the primary system structure and units data are split into some arrays.
Matter of course is unleash also activity exchange from neuron to neuron connection-twin.
This could be achieved reconsidering signal transferring purpose and the way it is
implemented.
Signals are sent to be computed by receivers. If a network is made of units with
continuous variables, update every channel-connection each instant is meaningful,
because the continuous state variable will change. But if units are spiking modelled,
producing discrete outputs in time, especially at biological rate (~10 Hz), an every-instant
update method will be a waste of time, because if a unit is active ten times in a second and
simulated time resolution is one ms, then 9990 times that unit will be asked for no reason.
Indeed, neural network simulation usually goes on like this:
 For each layer unit

1. run through all of its connections
2. add product of connection values for their weights to

their units synaptic sum
3. execute activation function with freshly changed values

Here there is an evident reversal of flow between starting position, ´each layer unit´, and
its connections. Instead, previous layer activations should flow through next layer
connections and then arrive to neurons owning them. SplitNeuron project, during input
update, adopts connection-oriented updating system. Instead of running from a
downstream unit point of view through every connection, only upstream active unit indexes
are sent to next layers in the network where are used to access arrays of connection. So,
the method is:

 For each active only upstream layer unit
1. add product of connection values and weights to

synaptic sum of only interseted neurons in next layer
2. execute activation function for all next layer units

Property: SplitNeuron algorithm performs M*N/R operations to accomplish input
phase, while other algorithms take M*N operation. Hence for growing values of R
SplitNeuron algorithm will be linearly faster than others.
Indeed, in SplitNeuron simulator there are M connections for each N unit, but only N/R
of them will be active on a given timeslot.

Doing so, time efficiency is saved at least for input update operations, that usually are the
most consuming ones. As an example, consider a layer made of 105 units, with only 102

connections each. If input function use 10 instructions for one connection update, there will
be 102+5 * 10 operations (100000000), using common method. Hence, simulating it on a
computer executing 1010 instructions per second, will take 10 ms to accomplish network
input phase. While, considering a biological plausible number of average active units of
1/10 of the total, SplitNeuron method will result in 102+4 * 10 operations (10000000), taking
only 1 ms to execute input. Since one project aim is real-time and neuron models make
use of Standard Euler algorithm set on 1 ms resolution, an algorithm allowing a very large
input phase to be execued on 1 ms scale is prefereable to that taking 10 ms.

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

This approach implies separate and different treatment for synapses (connections) and
somas (body) of units. Indeed there are already separate (exposed) arrays for connections
and somas. For every layer, only active connections update is done before, and after state
variables for all units are computed. This data treatment and algorithm gives the name
(split-neuron) to the project. In order to realize it, a new data structure is needed, bringing
upstream only active unit indexes to downstream layers and, at the same time, connection
arrays have to be arranged such to be rapidly accessed from upstream side (like is done in
connection oriented architecture). Next two paragraphs deal respectively with these
arguments.

SCarriage
Ensuing spike train terminology, new structure is called Carriage (SCarriage) carrying
active unit indexes during trip from emitting layer to receiving ones. SCarriage does not
exist in biology, it is a structure explicitly representing layer activity by means of its only
active units. Activity is conceptually and practically unbound from the layer producing it.
This allows a way to model biological delay between layers simply as a FIFO buffer made
of SCarriages. Furthermore, the same idea could be used as a (waiting room) buffer while
sending layer activities among several machines (see principles 5 and 6).

At the beginnings, SCarriage structure contained, in one
array of fixed lenght derived from layer size, just instant
active unit indexes. Even though this solution was simple
and temporally efficient, its space overhead was high. A
fixed lenght array (say 1/10 of layer size) is a good solution
but its base type should be kept as small as possible. But,
in more sized layers (say thousands units), array base type
would be too expensive. Indeed one byte can store indexes

for a layer of only 256 units, two bytes go up to 65536 units and four bytes can take a layer
of 4294967296 units. Consider that every position in this array should be as large as the
last index, so the position containing low indexes will waste space.
Another solution has been proposed (Thanks to Daniele ??? and Mirko Maishberger).
Array entries store not indexes directly, but offset between active units.
Now SCarriage has an int variable containing first active unit index in layer, and an array of
offset containing how many units separate next active one. In any case, even this solution
will need improvement, because of activity passage among machines would be carried out
by some packet transfer, most probably UDP that reduces control overheads compared
with TCP. But UDP packet is 8192 byte and, due to headers, available space is less. How
will be stored large layer possible active unit indexes in such small space? This remains
ToDo.

4.5 Connections
With SCarriage, layers expose only active units. This exposition has to be prosecuted in a
connection arrangement similar to connection-oriented one. These arrays are arranged in
a fashion that, given the active site by SCarriage, they return the index of affected
downstream units.
This organization follows biological evidence. Thanks to synapses among one neuron
axon and other neurons dendrites, upstream layer neurons are able to modify downstream
layers neurons membrane potential. In order to keep this organization consistent,
downstream connection arrays have to reflect upstream layer shape, so upstream layers

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://splitneuron.sourceforge.net/index.php?tab=h&sub=3
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P6
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P5

active sites, carried by SCarriage, trigger downstream layer connections update.
Each layer will have one bi-
dimensional array for each layer it
is connected to. First dimension
matches the shape of emitting
layer, i.e. the same number of
entries as upstream layer being
all possible active sites. Second
dimension is a list of indexes
inside downstream layer being
affected by each site activity.
During execution, incoming

SCarriage from one of the layers connected to the current one supplies the list of active
sites. This whereby, input function, following connections, updates synaptic sum of only
affected downstream layer units.
Such a framework would grant a speedup during input phase, because only active
connections are visited. Even if this method implies repetition on unit receiving activity
from multiple upstream sites, total saving will always be more than updating every
connection, especially in big sized cases.
Here can also be seen why synaptic sum is a separate array. Indeed, if synaptic sum was
contained as bit field into somas array, it would slow down execution during input phase,
both extracting sum field and recalling more information than necessary (which make no
sense for blocking system).

4.6 Receptive fields
Neuron dendritic tree is usually characterized by definite spatial relations. These relations
are known as receptive field and are usually represented as ´maps´ of connections
distribution, strenght and polarity sign. In almost all specific litterature receptive field
relations are expressed as functions, taking emitting and receiving position and other
parameters, returning connection value. Procedure is certainly precise but cannot be
general due to peculiarities in a lot of receptive field maps details.
Trying to ease procedure towards broader application, some assumptions have been
taken. First, topological relations of receptive field need not to be tied to exact location.
Second, algorithms do use current unit position, but it is a drowback of having them as
functions. Indeed spatial relations are indipendent from application locus. Next step is treat
receptive fields as they are represented in neuroscience manuals (see Kandel & al.
[1991]), i.e. as fields or maps. The solution adopted in this project is a text file (with
extension ´.rfm´, from receptive field map) containing each receptive site represented by a
character and a function taking several parameters such as layer size, unit position, mean
weight strenght, distribution types and so on.

File ´.rfm´ contains a square text matrix with an odd arbitrary number of
row and columns. Number has to be odd to surely have a center,
corresponding to the unit which owns the receptive field. Depending on
the values of the other matrix characters (named cells) connections to
current unit are established. Cell values are ASCII so are quite enough
for a lot of possible uses (e, i, c, +, -, ., 0, 1, 2,..., 9).

Example images show the simplest file, made of only 3 cells per row and column, but it is
nonetheless capable of representing different cells value (´.´ means ´no-value´; ´e´ means

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

´excitatory´; ´c´ means ´center´).
When rfm file is read, it is stored into a SReceptiveField structure containing an array of
SCell structures. Each SCell has a character from the file and its distance from the center,
expressed as coordinate difference.
Connection creation procedure follows a connection-oriented principle filtered with
receptive field map because connections will be accessed from a connection-oriented
point of view but downstream neuron is the field owner. Field is used to relate emitting
layer units with receiving unit according to map cells values and connection function
parameters.
Creating connection arrays goes on like this:
For each emitting unit

1. its index is translated into bi-dimensional coordinate
2. receiver receptive field map is applied centered onto emitting unit
3. all emitting units under receiver receptive field are accessed by means of map cells
4. emitting units filtered are assigned to downstream connection array entries

At the end, having projected receiving unit onto emitting ones, creation procedure has
been executed from emitter side with a connection-oriented mode but applying receiving
neuron map and has made assignment to a connection-oriented array.
Without any change, this procedure could be used to connect the layer to itself, using a
connection array that will receive in input the SCarriage output by the same layer.
In addition, map can be used directly but also be as guide applying distribution rules; used
to overlay current unit map with that of a target unit pointed or nearby unit within the same
layer.
Using text file representation eases complex fields creation, as an alternative to specific
functions there will be specific files, so changing field is open to not initially determined
cases (see principle 43). In any case, on the other side of connection method, the function
is made with a switch in order to be able to add new map treatment (see principle 23).

4.7 SGroup
Normally (see Kandel & al. [1991]), senses comprehend more than one receptor, coding
for various submodalities (an example is somatic system, having touch, pression,
temperature and pain receptors). As a consequence there are separate ways treating
separete aspects of senses. These distinctions are brought up to the cortex, where it is
realized a ´columnar organization´. Inside a layer, a column is a subset responding to only
one kind of receptor and only for a precise localization (another example: visual cortex has
got column each responding to a precise rotation of stimuli submitted to the eyes). This
selectivity is obtained by a complex receptive field, a common feature of cortical neurons.

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P23
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P43

A complex receptive field implies an accurate control of connections. In turn, control can
be eased by subsetting units into groups, as they were a column. Structure SGroup wish
to realize such demand containing pointers to layer units that are its members, so they
could be easily differentiate during connective phase.

4.8 Memory management
To reduce process segmentation and page faults coming from huge data segment, there
are two strategies: the first one, memory locking, makes use of system function calls
blocking normal paging on calling process memory pages, the second one, also using
system function calls, acts on process priority to grant highest continuity of execution.
4.8.1 Memory Locking
Facing peculiar demands requires an intense use of data segment and paging mechanism
is its enemy. This drowback can be prevented using system functions such as mlock() and
mlockall(), which simply mark process pages so they are not swapped but kept in physical
memories. In any case, growing network size, it is impossible to keep all data segment in
RAM. Therefore is needed a blocking management of arrays (see principles 2 and 41).
The main problem, here, is block size definition and implementation, that has to be
accomplished depending on cache size, and done at compile time, before any central
loop.
As an example, let tally up how much is a unit for the system:
1 unit = 4byte TARGASOMA + 4byte TARGASSUM + (4byte TARGACONN * connections)
10000 units with only 50 connections each means
TARGASOMA = ~40Kb
TARGASSUM = ~40Kb
TARGACONN = 10000 * ~200byte = ~2Mb
So, it is clear that a blocking management is needed, to organize RAM access.
4.8.2 Scheduling
Beside process memory management, CPU time management could be helpful to speed
up the system. This can be done setting process priority, that manages frequency and time
devoted by operating system to process access to CPU then effective execution.
Reduction of processes number (see principle 5) can be easily done on a Linux system,
were user can choose between graphical or not graphical interface and, more important,
superuser can improve quite arbitrarily process priority (see principle 4) thanks to
sched_getscheduler(), sched_getparam() and sched_setscheduler() functions .

4.9 Media conversion
Project design, to be complete, should plan various kind of input media, being files or
streams. Each external imput shall be transduced from its specific format into SCarriage
cascade feeding layers connected to. Static simulation, making use of single files (the one
implemented until now), does not need particular solution but only adequate tranlating
functions. On the other hand, stream simulations, should better use DMA (direct memory
access) in order to reduce CPU work to compute data.
This part, as many others are still ToDo and will benefit from any community contribution.

4.10 SLayer
The structure representing each layer will then be made of pointers to:

• mono-dimensional TARGASOMA array, for all the units
• mono-dimensional TARGASSUM array, for all units synaptic sums
• one SCarriage (array) for output

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/
http://splitneuron.sourceforge.net/index.php?tab=h&sub=3
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P4
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P5
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P41
http://splitneuron.sourceforge.net/index.php?tab=d&sub=3#P2

• (mono-dimensional SGroup array, for connections purposes)

Besides, SLayer has some variables representing units common features:
• total number of neurons
• constant input, membrane capacitance, reset value
• a unique variable for threshold in I&F and peak in SM (hence named threspeak)
• other variables for SM

Outside, to keep implementation simple and free to grow, there is one bi-dimensional
TARGACONN array for each upstream layer whom downstream layer is connected. This
solution has one main drowback: there is no link between connections arrays and the layer
owning them. The alternative choice would be an array of pointers inside SLayer, but
should be of fixed size or allocated at run time to let each layer have its own number of
connection arrays. Both choices are not very appealing, so this could be still discussed,
even because how layer owns connection is not so relevant at the moment.

SplitNeuron project © 2006 by Domenico Guarino
This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

